The Unlimited Sensing Framework (USF) is a digital acquisition protocol that allows for sampling and reconstruction of high dynamic range signals. By acquiring modulo samples, the USF circumvents the clipping or saturation problem that is a fundamental bottleneck in conventional analog-to-digital converters (ADCs). In the context of the USF, several works have focused on bandlimited function classes and recently, a hardware validation of the modulo sampling approach has been presented. In a different direction, in this paper we focus on non-bandlimited function classes and consider the well-known super-resolution problem; we study the recovery of sparse signals (Dirac impulses) from low-pass filtered, modulo samples. Taking an end-to-end approach to USF based super-resolution, we present a novel recovery algorithm (US-SR) that leverages a doubly sparse structure of the modulo samples. We derive a sampling criterion for the US-SR method. A hardware experiment with the modulo ADC demonstrates the empirical robustness of our method in a realistic, noisy setting, thus validating its practical utility.
翻译:无限遥感框架(USF)是一个数字获取协议,允许对高动态范围信号进行取样和重建。通过获取模版样本,USF避免了传统模拟数字转换器(ADCs)中一个根本瓶颈的剪切或饱和问题。在USF中,有几项工作侧重于带宽功能类别,最近,提出了对模版取样方法的硬件验证。在另一个方向上,我们侧重于非带宽功能类别,并考虑众所周知的超级分辨率问题;我们研究了从低通过过滤、模版样本中回收稀有信号(Dirac 脉冲)的问题。从基于USF的超级分辨率中采用端到端的方法,我们提出了一种新的回收算法(US-SR),利用了模版样品的加倍稀疏结构。我们为美国-SR方法制定了一个取样标准。与Mudulo ADC进行的硬件实验展示了我们方法在现实、温暖环境中的实际实用性。