The requirement to trace and process moving objects in the contemporary era gradually increases since numerous applications quickly demand precise moving object locations. The Map-matching method is employed as a preprocessing technique, which matches a moving object point on a corresponding road. However, most of the GPS trajectory datasets include stay-points irregularity, which makes map-matching algorithms mismatch trajectories to irrelevant streets. Therefore, determining the stay-point region in GPS trajectory datasets results in better accurate matching and more rapid approaches. In this work, we cluster stay-points in a trajectory dataset with DBSCAN and eliminate redundant data to improve the efficiency of the map-matching algorithm by lowering processing time. We reckoned our proposed method's performance and exactness with a ground truth dataset compared to a fuzzy-logic based map-matching algorithm. Fortunately, our approach yields 27.39% data size reduction and 8.9% processing time reduction with the same accurate results as the previous fuzzy-logic based map-matching approach.


翻译:在现代时代,跟踪和处理移动物体的要求逐渐增加,因为许多应用迅速要求精确移动物体的位置。地图匹配方法被用作一种预处理技术,与相应的道路上移动对象点相匹配。然而,大多数全球定位系统轨道数据集包括停留点不规则,使地图匹配算法与不相关的街道不匹配。因此,在全球定位系统轨道数据集中确定停留点区域的结果是更准确的匹配和更快的方法。在这项工作中,我们用DBSCAN的轨迹数据集将停留点分组,并消除多余的数据,通过降低处理时间来提高地图匹配算法的效率。我们计算了我们拟议方法的性能和精确度,与基于模糊的地图匹配算法相比,地面的真象数据集的性能和准确性。幸运的是,我们的方法将减少27.39%的数据大小和8.9%处理时间缩短,结果与以前的模糊的地图匹配方法相同。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月5日
Fully Sparse 3D Object Detection
Arxiv
0+阅读 · 2022年10月3日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
Top
微信扫码咨询专知VIP会员