We study a dynamic non-bipartite matching problem. There is a fixed set of agent types, and agents of a given type arrive and depart according to type-specific Poisson processes. The value of a match is determined by the types of the matched agents. We present an online algorithm that is (1/6)-competitive with respect to the value of the optimal-in-hindsight policy, for arbitrary weighted graphs. This is the first result to achieve a constant competitive ratio when both arrivals and departures are random and unannounced. Our algorithm treats agents heterogeneously, interpolating between immediate and delayed matching in order to thicken the market while still matching valuable agents opportunistically.
翻译:我们研究的是动态的非双向匹配问题。 有一套固定的代理类型, 特定类型的代理根据特定类型的 Poisson 程序到达和离开。 匹配的价值由匹配的代理商的类型决定。 我们提出了一个在线算法, 相对于最佳近视政策的价值而言具有竞争力(1/6), 对于任意加权图表而言。 这是在抵达和离开都是随机和不通知的情况下实现持续竞争比率的第一个结果。 我们的算法对代理商进行多种不同的处理, 即时和延迟匹配之间的插接, 以便扩大市场, 同时又在机会性上匹配有价值的代理商 。