We study the classical weighted perfect matchings problem for bipartite graphs or sometimes referred to as the assignment problem, i.e., given a weighted bipartite graph $G = (U\cup V,E)$ with weights $w : E \rightarrow \mathcal{R}$ we are interested to find the maximum matching in $G$ with the minimum/maximum weight. In this work we present a new and arguably simpler analysis of one of the earliest techniques developed for solving the assignment problem, namely the auction algorithm. Using our analysis technique we present tighter and improved bounds on the runtime complexity for finding an approximate minumum weight perfect matching in $k$-left regular sparse bipartite graphs.


翻译:我们研究的是典型的两边图表的加权完美匹配问题,或有时称之为任务分配问题,即,考虑到加权双边图形$G=(U\cup V,E),重量为$w:E\rightrow \mathcal{R},我们有兴趣找到以美元为单位与最低/最大重量的最大匹配。在这项工作中,我们对为解决任务分配问题而开发的最早的技术之一,即拍卖算法,进行了新的、可以说更简单的分析。利用我们的分析技术,我们提出了更严格、更完善的运行时复杂度,以寻找以美元偏左的普通稀薄两边图表为单位的近似微米重量完美匹配。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月4日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月11日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月4日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员