This paper introduces the Adaptive Learning Path Navigation (ALPN) system, a novel approach for enhancing E-learning platforms by providing highly adaptive learning paths for students. The ALPN system integrates the Attentive Knowledge Tracing (AKT) model, which assesses students' knowledge states, with the proposed Entropy-enhanced Proximal Policy Optimization (EPPO) algorithm. This new algorithm optimizes the recommendation of learning materials. By harmonizing these models, the ALPN system tailors the learning path to students' needs, significantly increasing learning effectiveness. Experimental results demonstrate that the ALPN system outperforms previous research by 8.2% in maximizing learning outcomes and provides a 10.5% higher diversity in generating learning paths. The proposed system marks a significant advancement in adaptive E-learning, potentially transforming the educational landscape in the digital era.
翻译:暂无翻译