LiDAR depth-only completion is a challenging task to estimate dense depth maps only from sparse measurement points obtained by LiDAR. Even though the depth-only methods have been widely developed, there is still a significant performance gap with the RGB-guided methods that utilize extra color images. We find that existing depth-only methods can obtain satisfactory results in the areas where the measurement points are almost accurate and evenly distributed (denoted as normal areas), while the performance is limited in the areas where the foreground and background points are overlapped due to occlusion (denoted as overlap areas) and the areas where there are no measurement points around (denoted as blank areas) since the methods have no reliable input information in these areas. Building upon these observations, we propose an effective Coupled U-Net (CU-Net) architecture for depth-only completion. Instead of directly using a large network for regression, we employ the local U-Net to estimate accurate values in the normal areas and provide the global U-Net with reliable initial values in the overlap and blank areas. The depth maps predicted by the two coupled U-Nets are fused by learned confidence maps to obtain final results. In addition, we propose a confidence-based outlier removal module, which removes outliers using simple judgment conditions. Our proposed method boosts the final results with fewer parameters and achieves state-of-the-art results on the KITTI benchmark. Moreover, it owns a powerful generalization ability under various depth densities, varying lighting, and weather conditions.


翻译:仅进行LiDAR深度的完成是一项艰巨的任务,只能从LIDAR取得的稀少测量点来估计密度深的深度地图。 尽管只采用深度的方法已经得到广泛开发,但在使用额外颜色图像的RGB指导方法方面,仍然存在着很大的绩效差距。我们发现,在测量点分布几乎准确和均匀的地区,现有的仅采用深度方法可以取得令人满意的结果(通常地区),而由于排除(作为重叠地区注意到)和在地面和背景点相互重叠的地区,以及由于地面和背景点相互重叠的地区(作为重叠地区注意到)和在地面和背景点之间没有深度测量点的地区(作为空白地区注意到),尽管只有深度的方法已经得到了广泛的开发。尽管如此,在使用这些观测结果的基础上,我们提出了有效的联合网络(CU-Net)结构,以便只进行深度的完成。我们没有直接使用大型的回归网络,而是使用当地的U-Net来估计正常地区的准确值,并且为全球U-Net提供可靠的初始值的重叠和空白地区。此外,两个与U-Net相伴的深度地图所绘制的深度点(作为空白地区),因为这种方法在这些地区没有可靠的输入了可靠的输入空白区域。我们通过学习到的推进的气候分析模型的模型的模型,我们用最后的模型来得出了最终的结果。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
专知会员服务
109+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Phase-aware Speech Enhancement with Deep Complex U-Net
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员