This paper deals with the maximum independent set (M.I.S.) problem, also known as the stable set problem. The basic mathematical programming model that captures this problem is an Integer Program (I.P.) with zero-one variables and only the edge inequalities. We present an enhanced model by adding a polynomial number of linear constraints, known as valid inequalities; this new model is still polynomial in the number of vertices in the graph. We carried out computational testing of the Linear Relaxation of the new Integer Program. We tested about 7000 instances of randomly generated (and connected) graphs with up to 64 vertices. In each of these instances, the Linear Relaxation returned an optimal solution with (i) every variable having an integer value, and (ii) the optimal solution value of the Linear Relaxation was the same as that of the original (basic) Integer Program. For certain instances, a binary search on the objective function value is a useful tool which yields a (weakly) polynomial algorithm. We were able to solve all 64-vertex and 128-vertex instances at the OEIS webpage polynomially using a "warm start" approach.
翻译:本文涉及最大独立的数据集( M. I. S. ) 问题, 也称为稳定设置问题 。 包含这一问题的基本数学编程模型是一个零一变量的整数程序( I. P. ), 包含零一变量, 只有边缘不平等 。 我们提出了一个强化模型, 增加了线性约束的多数值, 称为有效的不平等; 这个新模型仍然是图中脊椎数的多元值。 我们对新整数程序的线性放松进行了计算测试。 我们测试了大约7000例随机生成( 和连接) 图, 与64个顶脊椎相匹配。 在每种情况下, 线性放松都返回了一个最佳的解决方案, (一) 每个具有整数值的变量, (二) 线性放松的最佳解决方案值与原( 基本) Intger 程序相同。 在某些情况下, 我们对目标函数值进行了双向搜索, 是一个有用的工具, 可以产生( weakly) 聚点算法。 我们用“ 64- worvestial IS ” 和“ mol- wolexexex as ” 开始一个全网压 。