Models of many engineering and natural systems are imperfect. The discrepancy between the mathematical representations of a true physical system and its imperfect model is called the model error. These model errors can lead to substantial differences between the numerical solutions of the model and the state of the system, particularly in those involving nonlinear, multi-scale phenomena. Thus, there is increasing interest in reducing model errors, particularly by leveraging the rapidly growing observational data to understand their physics and sources. Here, we introduce a framework named MEDIDA: Model Error Discovery with Interpretability and Data Assimilation. MEDIDA only requires a working numerical solver of the model and a small number of noise-free or noisy sporadic observations of the system. In MEDIDA, first the model error is estimated from differences between the observed states and model-predicted states (the latter are obtained from a number of one-time-step numerical integrations from the previous observed states). If observations are noisy, a data assimilation (DA) technique such as ensemble Kalman filter (EnKF) is employed to provide the analysis state of the system, which is then used to estimate the model error. Finally, an equation-discovery technique, here the relevance vector machine (RVM), a sparsity-promoting Bayesian method, is used to identify an interpretable, parsimonious, and closed-form representation of the model error. Using the chaotic Kuramoto-Sivashinsky (KS) system as the test case, we demonstrate the excellent performance of MEDIDA in discovering different types of structural/parametric model errors, representing different types of missing physics, using noise-free and noisy observations.
翻译:许多工程和自然系统模型不完善。 真正的物理系统及其不完善模型的数学表达方式与不完善模型之间的差异被称为模型错误。 这些模型错误可能导致模型数字解决方案与系统状态之间的巨大差异, 特别是在非线性、 多尺度现象方面。 因此,人们越来越有兴趣减少模型错误, 特别是利用迅速增长的观测数据来理解其物理和来源。 这里, 我们引入了一个名为MEDIDA 的框架: 模型错误发现, 带有解释性和数据与数据相仿性。 MEDIDA 只需要一个模型的工作数字解析器, 以及少量的系统无噪音或噪音断断断续的观察。 在MEDIDA 中, 模型错误首先来自观测到的状态和模型预知状态之间的差异( 后者来自前所观测到的一次性数字集成数字集成集成集数, 数据解解析( Enkenblebleble) 数据模型( DAM) 技术, 用于提供系统的分析状态, 并在此使用精度的无噪音或噪音的系统, 代表机级性、 一种高级测试模型的判解算法 。 最后, 一种方法, 一种用于 一种模型- sal- sal- tral- tral- trismal- real- tral- tral- trismal- trismal- deal- trisal- trisal- trisal- solational- solational- exal- sal- sal- sal- sal- ex) 一种用于一种方法, ladingalationalational- sal- sal- sal- sal- sal- sal- sal- sal- exmental- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- salationalationalationalational- salational- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- s