LLM-based autonomous agents have recently shown strong capabilities in solving complex industrial design tasks. However, in domains aiming for carbon neutrality and high-performance renewable energy systems, current AI-assisted design automation methods face critical challenges in explainability, scalability, and practical usability. To address these limitations, we introduce PHIA (Physics-Informed Autonomous Agent), an LLM-driven system that automates modulation design for power converters in Power Electronics Systems with minimal human intervention. In contrast to traditional pipeline-based methods, PHIA incorporates an LLM-based planning module that interactively acquires and verifies design requirements via a user-friendly chat interface. This planner collaborates with physics-informed simulation and optimization components to autonomously generate and iteratively refine modulation designs. The interactive interface also supports interpretability by providing textual explanations and visual outputs throughout the design process. Experimental results show that PHIA reduces standard mean absolute error by 63.2% compared to the second-best benchmark and accelerates the overall design process by over 33 times. A user study involving 20 domain experts further confirms PHIA's superior design efficiency and usability, highlighting its potential to transform industrial design workflows in power electronics.
翻译:暂无翻译