Recent advancements in the domain of text-to-image synthesis have culminated in a multitude of enhancements pertaining to quality, fidelity, and diversity. Contemporary techniques enable the generation of highly intricate visuals which rapidly approach near-photorealistic quality. Nevertheless, as progress is achieved, the complexity of these methodologies increases, consequently intensifying the comprehension barrier between individuals within the field and those external to it. In an endeavor to mitigate this disparity, we propose a streamlined approach for text-to-image generation, which encompasses both the training paradigm and the sampling process. Despite its remarkable simplicity, our method yields aesthetically pleasing images with few sampling iterations, allows for intriguing ways for conditioning the model, and imparts advantages absent in state-of-the-art techniques. To demonstrate the efficacy of this approach in achieving outcomes comparable to existing works, we have trained a one-billion parameter text-conditional model, which we refer to as "Paella". In the interest of fostering future exploration in this field, we have made our source code and models publicly accessible for the research community.
翻译:暂无翻译