We develop a numerical solver for three-dimensional wave propagation in coupled poroelastic-elastic media, based on a high-order discontinuous Galerkin (DG) method, with the Biot poroelastic wave equation formulated as a first order conservative velocity/strain hyperbolic system. To derive an upwind numerical flux, we find an exact solution to the Riemann problem, including the poroelastic-elastic interface; we also consider attenuation mechanisms both in Biot's low- and high-frequency regimes. Using either a low-storage explicit or implicit-explicit (IMEX) Runge-Kutta scheme, according to the stiffness of the problem, we study the convergence properties of the proposed DG scheme and verify its numerical accuracy. In the Biot low frequency case, the wave can be highly dissipative for small permeabilities; here, numerical errors associated with the dissipation terms appear to dominate those arising from discretisation of the main hyperbolic system. We then implement the adjoint method for this formulation of Biot's equation. In contrast with the usual second order formulation of the Biot equation, we are not dealing with a self-adjoint system but, with an appropriate inner product, the adjoint may be identified with a non-conservative velocity/stress formulation of the Biot equation. We derive dual fluxes for the adjoint and present a simple but illuminating example of the application of the adjoint method.


翻译:我们开发了一个数字求解器, 用于三维波的传播, 以高分级不连续的 Galerkin (DG) 方法为基础, 将Biot 浮力波方程式配制为第一级保守速度/ strain 双曲系统。 要获取上风的数值通量, 我们找到一个精确的里曼问题解决方案, 包括浮力- 弹性界面; 我们还考虑在Biot 的低频和高频系统中, 使用减压机制。 使用低端直线或隐含表达( IMEX) Runge- Kutta 方法, 根据问题的僵硬性, 我们研究拟议的Dg 方程式的趋同性特性, 并核查其数字准确性。 在Biot 低频情况下, 与小易感应变度问题高度分解; 这里, 与分解条件相关的数字错误似乎控制了主要高离析系统分解后产生的机制。 我们随后根据问题的严重性, 使用低端或隐含的( IMEX) RO- Kut- Kutta) 等式(Iot) 等式) 方法, 与常规的双对等方程式进行双对等式的双对等式处理,, 与常规的双对等式对等式对等方程式进行不进行对比。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
《自然》(20190221出版)一周论文导读
科学网
6+阅读 · 2019年2月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
《自然》(20190221出版)一周论文导读
科学网
6+阅读 · 2019年2月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员