We propose Grounded Adaptation for Zero-shot Executable Semantic Parsing (GAZP) to adapt an existing semantic parser to new environments (e.g. new database schemas). GAZP combines a forward semantic parser with a backward utterance generator to synthesize data (e.g. utterances and SQL queries) in the new environment, then selects cycle-consistent examples to adapt the parser. Unlike data-augmentation, which typically synthesizes unverified examples in the training environment, GAZP synthesizes examples in the new environment whose input-output consistency are verified. On the Spider, Sparc, and CoSQL zero-shot semantic parsing tasks, GAZP improves logical form and execution accuracy of the baseline parser. Our analyses show that GAZP outperforms data-augmentation in the training environment, performance increases with the amount of GAZP-synthesized data, and cycle-consistency is central to successful adaptation.
翻译:我们提议对零射可执行语义剖析(GAZP)进行定点调整,以适应新的环境(例如新的数据库系统)。GAZP将前方语义剖析器与后方语句分析器结合,在新环境中合成数据(例如话语和SQL查询),然后选择周期一致的示例以适应剖析器。与通常综合培训环境中未经核实的例子的数据放大方法不同,GAZP综合了新环境中的输入输出一致性得到验证的新环境中的例子。在蜘蛛、石斑和COSQL零点语义分析任务方面,GAZP改进了基线剖析器的逻辑形式和执行准确性。我们的分析表明,GAZP在培训环境中的数据收集比数据放大率高,随着GAZP合成数据的数量增加,周期一致性是成功适应的核心。