We show that the vast majority of extensions of the description logic $\mathcal{EL}$ do not enjoy the Craig interpolation nor the projective Beth definability property. This is the case, for example, for $\mathcal{EL}$ with nominals, $\mathcal{EL}$ with the universal role, $\mathcal{EL}$ with a role inclusion of the form $r\circ s\sqsubseteq s$, and for $\mathcal{ELI}$. It follows in particular that the existence of an explicit definition of a concept or individual name cannot be reduced to subsumption checking via implicit definability. We show that nevertheless the existence of interpolants and explicit definitions can be decided in polynomial time for standard tractable extensions of $\mathcal{EL}$ (such as $\mathcal{EL}^{++}$) and in ExpTime for $\mathcal{ELI}$ and various extensions. It follows that these existence problems are not harder than subsumption which is in sharp contrast to the situation for expressive DLs. We also obtain tight bounds for the size of interpolants and explicit definitions and the complexity of computing them: single exponential for tractable standard extensions of $\mathcal{EL}$ and double exponential for $\mathcal{ELI}$ and extensions. We close with a discussion of Horn-DLs such as Horn-$\mathcal{ALCI}$.
翻译:我们显示,描述逻辑的绝大多数扩展值 $mathcal{EL} $ 没有Craig 内推值, 也没有投影 Beth 定义属性。 例如,以名义值为单位的$mathcal{EL} 美元, 以通用作用为单位的$mathcal{EL} 美元, 以美元格式为单位的$ mathcal s\sqsuseeteq s$, 以美元为单位的 mathcal{EL} $。 特别是, 概念或个体名称的明确定义的存在不能通过隐含的可定义减少为缩放检查。 我们显示,尽管如此, 内插值和明确定义的存在可以在多元时间内决定 $\ mathcal{EL} 美元的标准可扩展值( 如 $\ macalcal{EL} 美元, 以美元为单位的Explateal- calalal lical= cloaral deal 美元 libal_ lical lical lical 范围, 和 直径值为单位的精确值的精确值, 和精确值为单位的精确值的缩缩缩化。