Federated Learning (FL) is a novel machine learning framework, which enables multiple distributed devices cooperatively to train a shared model scheduled by a central server while protecting private data locally. However, the non-independent-and-identically-distributed (Non-IID) data samples and frequent communication across participants may significantly slow down the convergent rate and increase communication costs. To achieve fast convergence, we ameliorate the conventional local updating rule by introducing the aggregated gradients at each local update epoch, and propose an adaptive learning rate algorithm that further takes the deviation of local parameter and global parameter into consideration. The above adaptive learning rate design requires all clients' local information including the local parameters and gradients, which is challenging as there is no communication during the local update epochs. To obtain a decentralized adaptive learning rate for each client, we utilize the mean field approach by introducing two mean field terms to estimate the average local parameters and gradients respectively, which does not require the clients to exchange their local information with each other at each local epoch. Numerical results show that our proposed framework is superior to the state-of-art FL schemes in both model accuracy and convergent rate for IID and Non-IID datasets.
翻译:联邦学习是一种新的机器学习框架,可以使多个分布式设备在保护本地数据的同时协同训练由中央服务器调度的共享模型。然而,非独立和同分布的(Non-IID)数据样本以及参与者之间频繁的通信可能会显著降低收敛速度并增加通信成本。为了实现快速收敛,我们改进了传统的本地更新规则,引入了每个本地更新时期的聚合梯度,并提出了一种自适应学习率算法,进一步考虑了本地参数和全局参数之间的偏差。上述自适应学习率设计需要所有客户端的本地信息,包括本地参数和梯度,这是一项挑战,因为在本地更新时期没有通信。为了获得每个客户端的分散自适应学习率,我们利用平均场方法,引入两个平均场项来估计平均本地参数和梯度,这不需要客户端在每个本地时期相互交换本地信息。数值结果表明,我们提出的框架在IID和Non-IID数据集的模型准确性和收敛速率方面均优于最先进的联邦学习方案。