Variance-based global sensitivity analysis, in particular Sobol' analysis, is widely used for determining the importance of input variables to a computational model. Sobol' indices can be computed cheaply based on spectral methods like polynomial chaos expansions (PCE). Another choice are the recently developed Poincar\'e chaos expansions (PoinCE), whose orthonormal tensor-product basis is generated from the eigenfunctions of one-dimensional Poincar\'e differential operators. In this paper, we show that the Poincar\'e basis is the unique orthonormal basis with the property that partial derivatives of the basis form again an orthogonal basis with respect to the same measure as the original basis. This special property makes PoinCE ideally suited for incorporating derivative information into the surrogate modelling process. Assuming that partial derivative evaluations of the computational model are available, we compute spectral expansions in terms of Poincar\'e basis functions or basis partial derivatives, respectively, by sparse regression. We show on two numerical examples that the derivative-based expansions provide accurate estimates for Sobol' indices, even outperforming PCE in terms of bias and variance. In addition, we derive an analytical expression based on the PoinCE coefficients for a second popular sensitivity index, the derivative-based sensitivity measure (DGSM), and explore its performance as upper bound to the corresponding total Sobol' indices.
翻译:方差敏感度分析,在特别是Sobol'分析中广泛用于确定输入变量对计算模型的重要性。 Sobol'指数可以基于谱方法例如多项式混沌扩展(PCE)被经济地计算。 另一个选择是最近开发的Poincaré混沌扩展(PoinCE),其正交张量积基础是从一维Poincaré微分算子的特征函数生成的。 在本文中,我们展示了Poincaré基础的一种独特的正交基础性质,其中基础的偏导数形成了一个与原始基础相同的测度或基础下再次正交基础。 这种特殊的属性使PoinCE非常适合将导数信息纳入代理建模过程中。 假设计算模型的偏导数评估是可用的,我们通过稀疏回归分别计算基于Poincaré基础函数或基础偏导数的谱扩展。 我们在两个数值示例上展示了,基于导数的扩展提供了对Sobol'指数的准确估计,甚至在偏差和方差方面优于PCE。 此外,我们基于PoinCE系数导出一种基于导数的敏感度指数(DGSM)的解析表达式,并探索其作为相应总Sobol'指数上限的性能。