Most standard weighted multiple testing methods require the weights on the hypotheses to sum to one. We show that this normalization is not required when the weights are not constants, but are themselves e-values obtained from independent data. This could result in a massive increase in power, especially if the non-null hypotheses have e-values much larger than one. More broadly, we study how to combine an e-value and a p-value, and design multiple testing procedures where both e-values and p-values are available for every hypothesis (or one of them is available for an implied hypothesis). For false discovery rate (FDR) control, analogous to the Benjamini-Hochberg procedure with p-values (p-BH) and the recent e-BH procedure for e-values, we propose the ep-BH and the pe-BH procedures, which have valid FDR guarantee under different dependence assumptions. The procedures are designed based on several admissible combining functions for p/e-values. The method can be directly applied to family-wise error rate control problems. We also collect several miscellaneous results, such as a tiny but uniform improvement of e-BH, a soft-rank permutation e-value, and the use of e-values as masks in interactive multiple testing.
翻译:多数标准加权多重测试方法要求将假设的权重与假设相提并论。 我们显示,当重量不是常数时,并不要求这种正常化,而是本身是独立数据产生的电子值。 这可能导致权力的大幅增长,特别是如果非核假设的电子价值大于电子价值。 更广泛地说,我们研究如何将电子价值和p- 价值结合起来,并设计多种测试程序,其中每种假设都具备电子价值和p- 价值(或其中一种为隐含假设提供)。对于虚假的发现率(FDR)控制,类似于带有p- 值的Benjani-Hochberg程序(p-BH)和最近的e-BH电子价值的电子-BH程序,我们建议采用ep-BH和p-BH程序,这些程序在不同依赖性假设下具有有效的FDR保证。 这些程序的设计基于若干可接受的电子/e- 价值合并功能。 这种方法可以直接适用于家庭错误率控制问题。 与P- e- e- 电子- 电子- 电子- 互动性测试中的一些杂项结果,例如软性、 软性 和软性 软性 格式的改进。