A central goal in designing clinical trials is to find the test that maximizes power (or equivalently minimizes required sample size) for finding a false null hypothesis subject to the constraint of type I error. When there is more than one test, such as in clinical trials with multiple endpoints, the issues of optimal design and optimal procedures become more complex. In this paper we address the question of how such optimal tests should be defined and how they can be found. We review different notions of power and how they relate to study goals, and also consider the requirements of type I error control and the nature of the procedures. This leads us to an explicit optimization problem with objective and constraints which describe its specific desiderata. We present a complete solution for deriving optimal procedures for two hypotheses, which have desired monotonicity properties, and are computationally simple. For some of the optimization formulations this yields optimal procedures that are identical to existing procedures, such as Hommel's procedure or the procedure of Bittman et al. (2009), while for others it yields completely novel and more powerful policies than existing ones. We demonstrate the nature of our novel policies and their improved power extensively in simulation and on the APEX study (Cohen et al., 2016).
翻译:在设计临床试验时,一个中心目标是找到一种测试,在受I类误差限制的情况下,将权力最大化(或同等地最大限度地减少所需的样本规模),以找到虚假的无效假设,但受I类误差的限制。如果存在不止一种测试,例如在多端点临床试验中,最佳设计和最佳程序的问题就变得更加复杂。在本文件中,我们讨论了如何界定此类最佳测试以及如何找到最佳测试的问题。我们审查了不同的权力概念及其与研究目标的关系,还审议了第一类误差控制的要求和程序的性质。这导致我们出现一个明确的最佳化问题,其目标和限制描述了它的具体偏差。我们提出了一个为两种假设制定最佳程序的完整解决方案,这些假设具有理想的单一性特性,而且计算起来很简单。对于某些优化配方来说,它产生与现行程序相同的最佳程序,如Hommel的程序或Bittman等人的程序(2009年),而对于其他人来说,它产生比现有程序更加新颖和强大的政策。我们展示了我们的新政策的性质,并在模拟和AL研究中广泛改进了它们的力量(2016年,ABC 和AL研究)。