Efficiency of gradient propagation in intermediate layers of convolutional neural networks is of key importance for super-resolution task. To this end, we propose a deep architecture for single image super-resolution (SISR), which is built using efficient convolutional units we refer to as mixed-dense connection blocks (MDCB). The design of MDCB combines the strengths of both residual and dense connection strategies, while overcoming their limitations. To enable super-resolution for multiple factors, we propose a scale-recurrent framework which reutilizes the filters learnt for lower scale factors recursively for higher factors. This leads to improved performance and promotes parametric efficiency for higher factors. We train two versions of our network to enhance complementary image qualities using different loss configurations. We further employ our network for video super-resolution task, where our network learns to aggregate information from multiple frames and maintain spatio-temporal consistency. The proposed networks lead to qualitative and quantitative improvements over state-of-the-art techniques on image and video super-resolution benchmarks.
翻译:在进化神经网络的中间层中,梯度传播效率对于超分辨率任务至关重要。为此,我们提议为单一图像超分辨率(SISR)建立一个深层结构,该结构是使用我们称为混合感应连接区块(MDCB)的高效进化单元建造的。MDCB的设计结合了剩余和密集连接战略的优势,同时克服了这些优势的局限性。为了能够对多种因素实现超分辨率,我们提议一个规模经常框架,用于重新利用为较低比例因子而累积的过滤器。这导致性能的改善,并促进较高因素的准度效率。我们培训了我们的网络的两种版本,以便利用不同的损失配置加强互补图像质量。我们进一步利用我们的网络进行视频超分辨率任务,让我们的网络学习从多个框架收集信息,并保持时空一致性。拟议的网络导致对图像和视频超分辨率基准方面的最新技术进行质量和数量上的改进。