Runtime and memory consumption are two important aspects for efficient image super-resolution (EISR) models to be deployed on resource-constrained devices. Recent advances in EISR exploit distillation and aggregation strategies with plenty of channel split and concatenation operations to make full use of limited hierarchical features. In contrast, sequential network operations avoid frequently accessing preceding states and extra nodes, and thus are beneficial to reducing the memory consumption and runtime overhead. Following this idea, we design our lightweight network backbone by mainly stacking multiple highly optimized convolution and activation layers and decreasing the usage of feature fusion. We propose a novel sequential attention branch, where every pixel is assigned an important factor according to local and global contexts, to enhance high-frequency details. In addition, we tailor the residual block for EISR and propose an enhanced residual block (ERB) to further accelerate the network inference. Finally, combining all the above techniques, we construct a fast and memory-efficient network (FMEN) and its small version FMEN-S, which runs 33% faster and reduces 74% memory consumption compared with the state-of-the-art EISR model: E-RFDN, the champion in AIM 2020 efficient super-resolution challenge. Besides, FMEN-S achieves the lowest memory consumption and the second shortest runtime in NTIRE 2022 challenge on efficient super-resolution. Code is available at https://github.com/NJU-Jet/FMEN.
翻译:运行时间和记忆消耗是高效图像超分辨率(EISR)模型的两个重要方面,这些模型将安装在资源限制装置上,这是高效图像超分辨率(EISR)模型的两个重要方面。欧洲信息SR(EISR)最近的进展是利用蒸馏和集成战略来利用蒸馏和集成战略,并有大量的频道分割和凝聚操作,以充分利用有限的等级特征。相比之下,相继的网络运行避免了频繁访问前各州和额外的节点,从而有利于减少记忆消耗和运行时间管理。遵循这一理念,我们设计了我们的轻量网络主干,主要是堆叠叠叠多个高度优化的熔化和激活层,并减少特性组合的使用。我们提议了一个新的连续关注分支,根据当地和全球背景,将每个像素的蒸馏和组合战略配置一个重要因素,以加强高频率的细节。此外,我们为欧洲信息SR(EISR)的剩余块作了调整,并提出一个强化的剩余块(ERB)以进一步加速网络的推断。最后,将上述所有技术结合起来,我们建立一个快速和记忆高效的网络(FMEN-S)及其小型版本FEN-S(FEN-S)的节节节节节节节节节节节节节节节)的节能挑战,比2020内最快33%并减少74%记忆消耗消耗消耗消耗量消耗量。在2020-CF节内最短的AF-RM-CRMMMMMMMFS模型在2020号决议的最短的快速的20RF-CF-CRMMMF内,在2020年版本,在最短的20RMF内,在20RF内,在20RMUFMFMFMFMDMDMDMDMDMSMSMFMFMFMFMFMFMFMFMS模型上实现。