In GNSS-denied environments, aiding a vehicle's inertial navigation system (INS) is crucial to reducing the accumulated navigation drift caused by sensor errors (e.g. bias and noise). One potential solution is to use measurements of gravity as an aiding source. The measurements are matched to a geo-referenced map of Earth's gravity in order to estimate the vehicle's position. In this paper, we propose a novel formulation of the map matching problem using a hidden Markov model (HMM). Specifically, we treat the spatial cells of the map as the hidden states of the HMM and present a Viterbi style algorithm to estimate the most likely sequence of states, i.e. most likely sequence of vehicle positions, that results in the sequence of observed gravity measurements. Using a realistic gravity map, we demonstrate the accuracy of our Viterbi map matching algorithm in a navigation scenario and illustrate its robustness compared to existing methods.
翻译:在全球导航卫星系统封闭的环境中,协助飞行器的惯性导航系统(INS)对于减少传感器错误(如偏差和噪音)造成的累积导航漂移至关重要,其中一个潜在解决办法是使用重力测量作为辅助来源。测量与地球重力地理参照图相匹配,以便估计飞行器的位置。在本文件中,我们建议使用隐藏的Markov模型(HMM)来提出地图匹配问题的新配方。具体地说,我们把地图的空间单元作为HMM的隐藏状态处理,并采用维特比式算法来估计最可能的状态序列,即最有可能的车辆位置序列,得出观察到重力测量的顺序。我们使用现实的重力图,表明我们的维特比地图在导航情景中匹配算法的准确性,并表明其与现有方法相比的稳健性。