Upcoming technologies like digital twins, autonomous, and artificial intelligent systems involving safety-critical applications require models which are accurate, interpretable, computationally efficient, and generalizable. Unfortunately, the two most commonly used modeling approaches, physics-based modeling (PBM) and data-driven modeling (DDM) fail to satisfy all these requirements. In the current work, we demonstrate how a hybrid approach combining the best of PBM and DDM can result in models which can outperform them both. We do so by combining partial differential equations based on first principles describing partially known physics with a black box DDM, in this case, a deep neural network model compensating for the unknown physics. First, we present a mathematical argument for why this approach should work and then apply the hybrid approach to model two dimensional heat diffusion problem with an unknown source term. The result demonstrates the method's superior performance in terms of accuracy, and generalizability. Additionally, it is shown how the DDM part can be interpreted within the hybrid framework to make the overall approach reliable.
翻译:数字双胞胎、自主和人工智能系统等新兴技术涉及安全关键应用,这些技术需要精确、可解释、高效计算和通用的模型。 不幸的是,两种最常用的模型方法,即物理模型和数据驱动模型(DDM),未能满足所有这些要求。在目前的工作中,我们展示了将最佳PBM和DDDM组合在一起的混合方法如何产生既优于两者的模型。我们这样做的方式是,将基于初步原则的局部差异方程式结合起来,以描述部分已知物理学和黑盒DDDM, 在本案中, 一种深神经网络模型来补偿未知的物理。首先,我们提出了一个数学论据,说明为什么这一方法应该奏效,然后将混合方法应用于模型的二维热扩散问题,其来源术语未知。结果显示了这种方法在准确性和通用性方面的优异性表现。此外,我们展示了如何在混合框架内解释DDDM部分以使总体方法可靠。