We study the identity testing problem for high-dimensional distributions. Given as input an explicit distribution $\mu$, an $\varepsilon>0$, and access to sampling oracle(s) for a hidden distribution $\pi$, the goal in identity testing is to distinguish whether the two distributions $\mu$ and $\pi$ are identical or are at least $\varepsilon$-far apart. When there is only access to full samples from the hidden distribution $\pi$, it is known that exponentially many samples (in the dimension) may be needed for identity testing, and hence previous works have studied identity testing with additional access to various "conditional" sampling oracles. We consider a significantly weaker conditional sampling oracle, which we call the $\mathsf{Coordinate\ Oracle}$, and provide a computational and statistical characterization of the identity testing problem in this new model. We prove that if an analytic property known as approximate tensorization of entropy holds for an $n$-dimensional visible distribution $\mu$, then there is an efficient identity testing algorithm for any hidden distribution $\pi$ using $\tilde{O}(n/\varepsilon)$ queries to the $\mathsf{Coordinate\ Oracle}$. Approximate tensorization of entropy is a pertinent condition as recent works have established it for a large class of high-dimensional distributions. We also prove a computational phase transition: for a well-studied class of $n$-dimensional distributions, specifically sparse antiferromagnetic Ising models over $\{+1,-1\}^n$, we show that in the regime where approximate tensorization of entropy fails, there is no efficient identity testing algorithm unless $\mathsf{RP}=\mathsf{NP}$. We complement our results with a matching $\Omega(n/\varepsilon)$ statistical lower bound for the sample complexity of identity testing in the $\mathsf{Coordinate\ Oracle}$ model.
翻译:我们研究高维分布的特性测试问题。 以输入一个清晰的分布 ${ 立方 { 立方 $ 元 { 立方 { 立方 $ 0 美元, 以及获取隐藏分布 $\ pi$ 的取样或触法 。 身份测试的目标是区分两种分布 $\ mu$ 和 $ pi$ 是否相同, 或者至少是 $ 瓦列普 美元 。 当只有从隐藏分布 $\ pi 中获取完整样本时, 已知身份测试可能需要大量样本( 维度 ), 因此, 之前的工作已经研究过身份测试, 并额外访问各种“ 有条件” 取样或触法 。 我们考虑一个显著的有条件的取样或触法, 我们称之为“ 立方 立方 立方 质化 ” 的模型, 用于 以美元为一元以上可见分布 $,, 然后一个高效的身份测试, 除非隐藏分销的运行阶段 $\ 质 质 的 质 测试 美元 。