Urban intersections are prone to delays and inefficiencies due to static precedence rules and occlusions limiting the view on prioritized traffic. Existing approaches to improve traffic flow, widely known as automatic intersection management systems, are mostly based on non-learning reservation schemes or optimization algorithms. Machine learning-based techniques show promising results in planning for a single ego vehicle. This work proposes to leverage machine learning algorithms to optimize traffic flow at urban intersections by jointly planning for multiple vehicles. Learning-based behavior planning poses several challenges, demanding for a suited input and output representation as well as large amounts of ground-truth data. We address the former issue by using a flexible graph-based input representation accompanied by a graph neural network. This allows to efficiently encode the scene and inherently provide individual outputs for all involved vehicles. To learn a sensible policy, without relying on the imitation of expert demonstrations, the cooperative planning task is considered as a reinforcement learning problem. We train and evaluate the proposed method in an open-source simulation environment for decision making in automated driving. Compared to a first-in-first-out scheme and traffic governed by static priority rules, the learned planner shows a significant gain in flow rate, while reducing the number of induced stops. In addition to synthetic simulations, the approach is also evaluated based on real-world traffic data taken from the publicly available inD dataset.


翻译:现有改进交通流量的方法(广为人知的自动交叉管理系统)主要基于非学习性预订计划或优化算法; 机械学习技术在规划单一自利车辆方面显示出有希望的成果; 这项工作提议利用机器学习算法,通过联合规划多辆车辆,优化城市交叉路口的交通流量; 基于学习的行为规划带来了若干挑战,要求有合适的投入和产出代表以及大量的地面实况数据。我们通过使用灵活的图表化输入代表,并辅之以一个图形神经网络来解决前一个问题。这样可以有效地对场景进行编码,并必然为所有所涉车辆提供个别产出。 要学习明智的政策,而不依赖专家示范的仿照,合作规划任务被视为一个强化学习问题。 我们在开放源模拟环境中为自动驾驶决策而培训和评价拟议的方法。 与先出方案和由静态优先规则规范的交通相比,所学计划显示的交通流动率显著提高,同时从可获取的合成世界数据降低实际数字。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
51+阅读 · 2021年6月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
15+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月18日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
15+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员