Discretization of continuous-time diffusion processes is a widely recognized method for sampling. However, it seems to be a considerable restriction when the potentials are often required to be smooth (gradient Lipschitz). This paper studies the problem of sampling through Euler discretization, where the potential function is assumed to be a mixture of weakly smooth distributions and satisfies weakly dissipative. We establish the convergence in Kullback-Leibler (KL) divergence with the number of iterations to reach $\epsilon$-neighborhood of a target distribution in only polynomial dependence on the dimension. We relax the degenerated convex at infinity conditions of \citet{erdogdu2020convergence} and prove convergence guarantees under Poincar\'{e} inequality or non-strongly convex outside the ball. In addition, we also provide convergence in $L_{\beta}$-Wasserstein metric for the smoothing potential.
翻译:连续时间扩散过程的分解是广泛公认的取样方法。 但是,当通常要求潜力平滑时,这似乎是一个相当大的限制( 平坦的利普西茨) 。 本文研究了通过Euler分解进行取样的问题, 假设这种潜在功能是微弱顺滑分布的混合体, 并且满足了微弱的分散性。 我们在 Kullback- Leibel (KL) 中建立了对迭代数的趋同度, 以达到仅仅多角度依赖该维度的目标分布的近邻。 我们在\ cite{erdogdu20convergence} 的无限条件下放松退化的锥体, 并证明Poincar\\ {e} 不平等或球外非强烈共和度的保证。 此外, 我们还为平滑潜力提供了 $L ⁇ beta} $Wasserstein 的趋同度指标。