This paper proposes a theoretical framework on the mechanism of autoencoders. To the encoder part, under the main use of dimensionality reduction, we investigate its two fundamental properties: bijective maps and data disentangling. The general construction methods of an encoder that satisfies either or both of the above two properties are given. The generalization mechanism of autoencoders is modeled. Based on the theoretical framework above, we explain some experimental results of variational autoencoders, denoising autoencoders, and linear-unit autoencoders, with emphasis on the interpretation of the lower-dimensional representation of data via encoders; and the mechanism of image restoration through autoencoders is natural to be understood by those explanations. Compared to PCA and decision trees, the advantages of (generalized) autoencoders on dimensionality reduction and classification are demonstrated, respectively. Convolutional neural networks and randomly weighted neural networks are also interpreted by this framework.
翻译:本文提出了关于自动编码器机制的理论框架。 对于编码器部分,在主要使用维度减少法的情况下,我们研究了其两个基本特性:双向图和数据脱钩。给出了满足上述两个特性中任一或两个特性的编码器的一般构造方法。自动编码器的通用机制是建模的。根据上述理论框架,我们解释了变式自动编码器、脱钩自动编码器和线性单向自动编码器的一些实验结果,重点是通过编码器对数据较低维度表示的解释;通过自动编码器恢复图像的机制是自然的,这些解释可以理解。与五氯苯甲醚和决定树相比,分别展示了(通用)自动编码器在减少和分类方面的优势。这个框架还解释了进化神经网络和随机加权神经网络。