Despite all the benefits of automated hyperparameter optimization (HPO), most modern HPO algorithms are black-boxes themselves. This makes it difficult to understand the decision process which leads to the selected configuration, reduces trust in HPO, and thus hinders its broad adoption. Here, we study the combination of HPO with interpretable machine learning (IML) methods such as partial dependence plots. These techniques are more and more used to explain the marginal effect of hyperparameters on the black-box cost function or to quantify the importance of hyperparameters. However, if such methods are naively applied to the experimental data of the HPO process in a post-hoc manner, the underlying sampling bias of the optimizer can distort interpretations. We propose a modified HPO method which efficiently balances the search for the global optimum w.r.t. predictive performance \emph{and} the reliable estimation of IML explanations of an underlying black-box function by coupling Bayesian optimization and Bayesian Algorithm Execution. On benchmark cases of both synthetic objectives and HPO of a neural network, we demonstrate that our method returns more reliable explanations of the underlying black-box without a loss of optimization performance.
翻译:尽管自动超光度优化(HPO)带来种种好处,但大多数现代HPO算法本身都是黑盒子。这使得很难理解导致选定配置的决策过程,降低对HPO的信任,从而阻碍其广泛采用。在这里,我们研究HPO与可解释的机器学习方法(IML)的结合,如部分依赖性地块。这些技术越来越被用来解释超光度计对黑箱成本功能的边际效应,或者用来量化超光度计的重要性。然而,如果这种方法被天真地应用于HPO过程的实验数据,那么优化者的基本抽样偏差会扭曲解释。我们提议修改的HPO方法可以有效地平衡全球最佳W.r.t.预测性性能的搜索。这些技术越来越被用来解释透度对黑箱功能的基本解释的可靠估计,即将Bayesian优化和Bayesian Algorithm 执行合并在一起。关于合成目标的基准和神经网络的HPO两种情况,我们证明我们的方法可以更可靠地解释黑色损失的基本表现。