Though U-Net has achieved tremendous success in medical image segmentation tasks, it lacks the ability to explicitly model long-range dependencies. Therefore, Vision Transformers have emerged as alternative segmentation structures recently, for their innate ability of capturing long-range correlations through Self-Attention (SA). However, Transformers usually rely on large-scale pre-training and have high computational complexity. Furthermore, SA can only model self-affinities within a single sample, ignoring the potential correlations of the overall dataset. To address these problems, we propose a novel Transformer module named Mixed Transformer Module (MTM) for simultaneous inter- and intra- affinities learning. MTM first calculates self-affinities efficiently through our well-designed Local-Global Gaussian-Weighted Self-Attention (LGG-SA). Then, it mines inter-connections between data samples through External Attention (EA). By using MTM, we construct a U-shaped model named Mixed Transformer U-Net (MT-UNet) for accurate medical image segmentation. We test our method on two different public datasets, and the experimental results show that the proposed method achieves better performance over other state-of-the-art methods. The code is available at: https://github.com/Dootmaan/MT-UNet.
翻译:虽然U-Net在医学图像分割任务方面取得了巨大成功,但它缺乏明确模型长期依赖性的能力。 因此,愿景变异器最近成为替代分割结构,因为其天生通过自我自省(SA)获取远程关联的能力。 但是,变异器通常依赖大规模的预培训,并且具有很高的计算复杂性。 此外, SA只能在单一样本中模拟自亲关系, 忽视整个数据集的潜在相关性。 为了解决这些问题, 我们提议了一个名为混合变异器模块(MTM)的新型变异器模块(MTM), 用于同时进行亲近体间和内部学习。 MTM首先通过我们精心设计的本地- 全球高频- 视觉自省(LGG- SA) 来有效计算自我亲近性。 然后, 它通过外部关注(EA) 来埋设数据样本之间的相互联系。 我们通过MTM, 构建一个名为 U- 模型的混合变异U- Net (MT-UNet) 的模型, 用于准确的医疗图像分割。 我们测试我们的方法是两种不同的公共数据设置方法: 现有/ 实验性模型显示其他的绩效。