This paper analyzes the effects of dynamically varying video contents and detection latency on the real-time detection accuracy of a detector and proposes a new run-time accuracy variation model, ROMA, based on the findings from the analysis. ROMA is designed to select an optimal detector out of a set of detectors in real time without label information to maximize real-time object detection accuracy. ROMA utilizing four YOLOv4 detectors on an NVIDIA Jetson Nano shows real-time accuracy improvements by 4 to 37% for a scenario of dynamically varying video contents and detection latency consisting of MOT17Det and MOT20Det datasets, compared to individual YOLOv4 detectors and two state-of-the-art runtime techniques.
翻译:本文分析了动态变化的视频内容和探测延迟度对探测器实时检测准确性的影响,并根据分析结果提出了新的运行时间精确度变化模型(ROMA)。ROMA旨在实时从一套探测器中选择一种最佳检测器,不提供标签信息,以最大限度地实现实时物体检测准确性。ROMA利用NVIDIA Jetson Nano上的四台YOLOV4探测器,在动态变化的视频内容和探测延迟度假设中显示实时精确度提高4%至37%,其中包括MOT17Det和MOT20Det数据集,与单个YOLOv4探测器和两种最先进的运行时间技术相比。