We introduce ADAHESSIAN, a second order stochastic optimization algorithm which dynamically incorporates the curvature of the loss function via ADAptive estimates of the HESSIAN. Second order algorithms are among the most powerful optimization algorithms with superior convergence properties as compared to first order methods such as SGD and Adam. The main disadvantage of traditional second order methods is their heavier per iteration computation and poor accuracy as compared to first order methods. To address these, we incorporate several novel approaches in ADAHESSIAN, including: (i) a fast Hutchinson based method to approximate the curvature matrix with low computational overhead; (ii) a root-mean-square exponential moving average to smooth out variations of the Hessian diagonal across different iterations; and (iii) a block diagonal averaging to reduce the variance of Hessian diagonal elements. We show that ADAHESSIAN achieves new state-of-the-art results by a large margin as compared to other adaptive optimization methods, including variants of Adam. In particular, we perform extensive tests on CV, NLP, and recommendation system tasks and find that ADAHESSIAN: (i) achieves 1.80%/1.45% higher accuracy on ResNets20/32 on Cifar10, and 5.55% higher accuracy on ImageNet as compared to Adam; (ii) outperforms AdamW for transformers by 0.13/0.33 BLEU score on IWSLT14/WMT14 and 2.7/1.0 PPL on PTB/Wikitext-103; (iii) outperforms AdamW for SqueezeBert by 0.41 points on GLUE; and (iv) achieves 0.032% better score than Adagrad for DLRM on the Criteo Ad Kaggle dataset. Importantly, we show that the cost per iteration of ADAHESSIAN is comparable to first order methods, and that it exhibits robustness towards its hyperparameters.


翻译:我们引入了ADAHESSIAN的第二顺序随机优化算法, 以动态方式将损失函数的曲线曲线化纳入 HESSIAN 的自动估计。 第二顺序算法与SGD 和 Adam 等第一顺序方法相比,是最强大的趋同性最强的优化算法。 传统的第二顺序方法的主要劣势是, 其每次迭代计算法的比重较大, 其准确性比第一顺序方法差。 为了解决这些问题, 我们在ADAHESSIAN 中引入了几种新颖的方法, 包括:(一) 快速的 Hutchinson 方法, 以低计算间接费用来接近曲线矩阵的曲线矩阵;(二) 根平均值-正方平方平方位平滑的Hesian 双向不同迭接合;以及 (三) 块偏差的二分法, 降低Hesians dadald P10/ disionald, 显示在高级货币系统上比AV、 NLMFO 和 更高级的SALLTF 的比亚化方法要高。

0
下载
关闭预览

相关内容

【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
8+阅读 · 2018年6月19日
Arxiv
3+阅读 · 2018年6月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Top
微信扫码咨询专知VIP会员