The error threshold of a one-parameter family of quantum channels is defined as the largest noise level such that the quantum capacity of the channel remains positive. This in turn guarantees the existence of a quantum error correction code for noise modeled by that channel. Discretizing the single-qubit errors leads to the important family of Pauli quantum channels; curiously, multipartite entangled states can increase the threshold of these channels beyond the so-called hashing bound, an effect termed superadditivity of coherent information. In this work, we divide the simplex of Pauli channels into one-parameter families and compute numerical lower bounds on their error thresholds. We find substantial increases of error thresholds relative to the hashing bound for large regions in the Pauli simplex corresponding to biased noise, which is a realistic noise model in promising quantum computing architectures. The error thresholds are computed on the family of graph states, a special type of stabilizer state. In order to determine the coherent information of a graph state, we devise an algorithm that exploits the symmetries of the underlying graph, resulting in a substantial computational speed-up. This algorithm uses tools from computational group theory and allows us to consider symmetric graph states on a large number of vertices. Our algorithm works particularly well for repetition codes and concatenated repetition codes (or cat codes), for which our results provide the first comprehensive study of superadditivity for arbitrary Pauli channels. In addition, we identify a novel family of quantum codes based on tree graphs. The error thresholds of these tree graph states outperform repetition and cat codes in large regions of the Pauli simplex, and hence form a new code family with desirable error correction properties.


翻译:量子频道一参数系列的错误阈值被定义为最大噪声水平, 使频道的量子能力保持正数。 这反过来保证了该频道所建噪音的量子错误校正代码的存在。 分解单位差错导致保利量频道的重要家族; 奇怪的是, 多方纠结状态可以提高这些频道的阈值, 超越所谓的“ 散列约束 ”, 一种被称为一致性信息的超增加性效应。 在这项工作中, 我们将保利频道的简单值错误分解成一个参数家族, 并计算出其错误值值的任意度阈值。 我们发现, 相对于保利简单线大区域的误差值校正代码, 这是在有希望的量子计算结构中现实的噪音模型模型。 在图形状态组中计算错误阈值, 一种叫做“ 稳定状态 ” 。 为了确定一个图形状态的一致信息, 我们设计一种算法, 利用基础图表的精确度的精确度的精确度值, 并计算其直径直径直值值值的直径直径直径值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值比值比值比值比值值值值值比值比值值值值值值比值比值比值比值比值比值比值比值比值, 。, 。,,,,,,,,,,,,,,,, 也就是为我们算算算算算算算算算算算算算算法算算算算算法,,, 。算算算算算算算算算算法工具,, 算算算算算算算法系计算法,, 算算算算算算算算法,, 算算算算算算算算算

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月29日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员