Population adjustment methods such as matching-adjusted indirect comparison (MAIC) are increasingly used to compare marginal treatment effects when there are cross-trial differences in effect modifiers and limited patient-level data. MAIC is sensitive to poor covariate overlap and cannot extrapolate beyond the observed covariate space. Current outcome regression-based alternatives can extrapolate but target a conditional treatment effect that is incompatible in the indirect comparison. When adjusting for covariates, one must integrate or average the conditional estimate over the population of interest to recover a compatible marginal treatment effect. We propose a marginalization method based on parametric G-computation that can be easily applied where the outcome regression is a generalized linear model or a Cox model. In addition, we introduce a novel general-purpose method based on multiple imputation, which we term multiple imputation marginalization (MIM) and is applicable to a wide range of models. Both methods can accommodate a Bayesian statistical framework, which naturally integrates the analysis into a probabilistic framework. A simulation study provides proof-of-principle for the methods and benchmarks their performance against MAIC and the conventional outcome regression. The marginalized outcome regression approaches achieve more precise and more accurate estimates than MAIC, particularly when covariate overlap is poor, and yield unbiased marginal treatment effect estimates under no failures of assumptions. Furthermore, the marginalized covariate-adjusted estimates provide greater precision and accuracy than the conditional estimates produced by the conventional outcome regression, which are systematically biased because the measure of effect is non-collapsible.


翻译:人口调整方法,如相配调整间接比较(MAIC),越来越多地用于比较边际治疗效果。当效果修正者和有限的病人一级数据存在跨审差异时,则越来越多地使用人口调整方法,以比较边际治疗效果。MAIC对低共变重叠十分敏感,不能超出观察到的共变空间范围外推断。目前基于结果的回归替代办法可以推断,但针对一种与间接比较不相容的有条件治疗效果。在对共变调整时,必须结合或平均对受关注人群的有条件估计,以恢复相容的边际治疗效果。我们提议一种基于参数G对准的边缘化方法,在结果回归是一种普遍线性模型或Cox模式的情况下,这种方法很容易应用。此外,我们采用了一种基于多重估算的新的通用方法,我们称之为多重估算边缘化边缘化边缘化边缘化(MIM),并适用于广泛的模式。两种方法都可容纳一种与间接差异相关的有条件的治疗框架,将分析自然将分析纳入一种相容的边际治疗效果。我们提出一种证据性原则,用以衡量其业绩和基准与MAIC和常规结果回归性回归模型。此外,结果的精确性估算比更精确性分析更精确的结果是,结果的后,结果更准确性分析是更准确性分析方法,因为结果的回归性评估是更精确和最差的,结果的后的结果是更精确性评估,结果的后推比结果的后推。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员