The cost of both generalized least squares (GLS) and Gibbs sampling in a crossed random effects model can easily grow faster than $N^{3/2}$ for $N$ observations. Ghosh et al. (2020) develop a backfitting algorithm that reduces the cost to $O(N)$. Here we extend that method to a generalized linear mixed model for logistic regression. We use backfitting within an iteratively reweighted penalized least square algorithm. The specific approach is a version of penalized quasi-likelihood due to Schall (1991). A straightforward version of Schall's algorithm would also cost more than $N^{3/2}$ because it requires the trace of the inverse of a large matrix. We approximate that quantity at cost $O(N)$ and prove that this substitution makes an asymptotically negligible difference. Our backfitting algorithm also collapses the fixed effect with one random effect at a time in a way that is analogous to the collapsed Gibbs sampler of Papaspiliopoulos et al. (2020). We use a symmetric operator that facilitates efficient covariance computation. We illustrate our method on a real dataset from Stitch Fix. By properly accounting for crossed random effects we show that a naive logistic regression could underestimate sampling variances by several hundred fold.
翻译:在宽度随机效应模型中,一般最低方(GLS)和Gibbs抽样的成本都很容易比美元3/2美元(美元)的观察成本增长更快。Ghosh等人(202020年)开发了一种将成本降低至美元(美元)的回调算法。在这里,我们将这种方法推广到普遍线性混合模式,以利后勤回归。我们用的是迭代再加权的、受处罚的最低方算法。具体的方法是Schall(1991年)的受罚准相似性(准相似性)的版本。一个直接版本的Schall的算法成本也高于美元(N3/2美元),因为它需要大矩阵的反差迹。我们以美元估算该数量,并证明这种替代可以产生无微小的差别。我们的后补算法也使固定效果崩溃,一次随机效果与Scapspililiopouls等人(202020年)的崩溃的Gibs采样器类似。我们使用一个配方操作器来便利高效的逆差计算。我们用一种方法,我们用100次的精确度计算方法来说明我们从Stellimregregregregrequest进行精确的精确分析。我们可以正确分析。