The R package BayesPPD (Bayesian Power Prior Design) supports Bayesian power and type I error calculation and model fitting after incorporating historical data with the power prior and the normalized power prior for generalized linear models (GLM). The package accommodates summary level data or subject level data with covariate information. It supports use of multiple historical datasets as well as design without historical data. Supported distributions for responses include normal, binary (Bernoulli/binomial), Poisson and exponential. The power parameter $a_0$ can be fixed or modeled as random using a normalized power prior for each of these distributions. In addition, the package supports the use of arbitrary sampling priors for computing Bayesian power and type I error rates, and has specific features for GLMs that semi-automatically generate sampling priors from historical data. Since sample size determination (SSD) for GLMs is computationally intensive, an approximation method based on asymptotic theory has been implemented to support applications using the power prior. In addition to describing the statistical methodology and functions implemented in the package to enable SSD, we also demonstrate the use of BayesPPD in two comprehensive case studies.


翻译:R 包包 BayesPPD (Bayesian Power Power Power Prior Development) 支持Bayesian 电力和I型错误计算和模型在对通用线性模型(GLM)使用先功率和先成正统功率(GLM)纳入历史数据后安装Bayesian 电力和先成正统功率后安装Bayesian 电源和先成型的模型。该包包包含摘要级数据或主题级数据及共变异信息。该包支持使用多历史数据集,以及没有历史数据的设计。辅助响应的分布包括正常、二进制(Bernoulli/binomial)、Poisson和指数。 电源参数$a_0可以固定或随机建模,在每种分配之前使用正常功率进行。此外,该包除了描述在计算Bayesian 电力和I型错误率时使用的统计方法和功能外,还支持使用用于半自动的GLMs,在历史数据之前进行半自动生成抽样抽样抽样研究。我们还在两个案例中使用了近似方法以支持应用SDPPPSD。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月18日
Warped Dynamic Linear Models for Time Series of Counts
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员