Differential privacy via output perturbation has been a \textit{de facto} standard for releasing query or computation results on sensitive data. However, we identify that all existing Gaussian mechanisms suffer from the curse of full-rank covariance matrices, and hence the expected accuracy losses of these mechanisms equal the trace of the covariance matrix of the noise. To lift this curse, we design a Rank-1 Singular Multivariate Gaussian (R1SMG) mechanism. It achieves $(\epsilon,\delta)$-DP on query results in $\mathbb{R}^M$ by perturbing the results with noise following a singular multivariate Gaussian distribution, whose covariance matrix is a \textbf{randomly} generated rank-1 positive semi-definite matrix. In contrast, the classic Gaussian mechanism and its variants all consider \textbf{deterministic} full-rank covariance matrices. Our idea is motivated by a clue from Dwork et al.'s seminal work on the classic Gaussian mechanism that has been ignored: when projecting multivariate Gaussian noise with a full-rank covariance matrix onto a set of orthonormal basis in $\mathbb{R}^M$, only the coefficient of a single basis can contribute to the privacy guarantee. We make the following contributions. The R1SMG mechanisms achieves $(\epsilon,\delta)$-DP guarantee on query results in $\R^M$, while its expected accuracy loss is lower bounded by $C_R(\Delta_2f)^2$, where $C_R = \frac{2}{\epsilon \psi}$ and $\psi = \Big(\frac{\delta\Gamma(\frac{M-1}{2})}{\sqrt{\pi}\Gamma(\frac{M}{2})}\Big)^{\frac{2}{M-2}}$. We show that $C_R$ has a decreasing trend as $M$ increases, and converges to $\frac{2}{\epsilon}$ as $M$ approaches infinity. Compared with other mechanisms, the R1SMG mechanism is more stable and less likely to generate noise with large magnitude that overwhelms the query results.


翻译:暂无翻译

0
下载
关闭预览

相关内容

在概率论和统计学中,协方差矩阵(也称为自协方差矩阵,色散矩阵,方差矩阵或方差-协方差矩阵)是平方矩阵,给出了给定随机向量的每对元素之间的协方差。 在矩阵对角线中存在方差,即每个元素与其自身的协方差。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员