Semiparametric Bayesian inference has so far relied on models for the observable that partition into two parts, one being parametric and the other nonparametric, with the target parameter being dependent on the parametric component. While a partitioned structure makes specification of the marginal prior on the target parameter simple to perform, it often arises from conditional modelling which is subject to misspecification and ultimately a lack of consistency. We introduce a new type of semiparametric model to allow easy prior specification for a parameter that is defined as a functional of the distribution for the observable. Our semiparametric model is obtained as an extension of nonparametric models that are consistent under very general conditions. This type of Bayesian semiparametric model can be used to obtain Bayesian versions of Frequentist estimators that are defined as functionals of the empirical distribution. This gives us new opportunities to conduct Bayesian analysis in problems where Frequentist estimators exist but not well-accepted likelihoods.
翻译:迄今为止,半对称贝伊斯推断依据了可观测到的模型,这种模型分为两个部分,一个是参数,另一个是非参数,其目标参数取决于参数组成部分。虽然分离的结构对目标参数简单可操作的参数之前的边际作了规格说明,但往往产生于有条件的模型,这种模型可能会有误分,最终缺乏一致性。我们引入了一种新的半参数模型,以方便地先订出参数的规格,该参数被界定为可观测分布的函数。我们的半参数模型是作为非参数模型的延伸获得的,这种非参数模型在非常一般的条件下是一致的。这种巴伊西亚半参数模型可以用来获取被界定为经验分布功能的常见估计人的巴伊西亚版本。这给了我们新的机会,在存在常数估计者但无法充分接受的可能性的情况下,对存在的问题进行贝伊斯人分析。