We present an end-to-end Reinforcement Learning(RL) framework for robotic manipulation tasks, using a robust and efficient keypoints representation. The proposed method learns keypoints from camera images as the state representation, through a self-supervised autoencoder architecture. The keypoints encode the geometric information, as well as the relationship of the tool and target in a compact representation to ensure efficient and robust learning. After keypoints learning, the RL step then learns the robot motion from the extracted keypoints state representation. The keypoints and RL learning processes are entirely done in the simulated environment. We demonstrate the effectiveness of the proposed method on robotic manipulation tasks including grasping and pushing, in different scenarios. We also investigate the generalization capability of the trained model. In addition to the robust keypoints representation, we further apply domain randomization and adversarial training examples to achieve zero-shot sim-to-real transfer in real-world robotic manipulation tasks.
翻译:我们为机器人操作任务提出了一个端到端的强化学习(RL)框架, 使用一个稳健有效的关键点代表。 拟议的方法通过一个自我监督的自动编码结构,从作为国家代表的相机图像中学习关键点。 关键点编码了几何信息,以及工具和目标在一个缩略语中的关系,以确保高效和有力的学习。 在关键点学习后, RL 步骤从提取的关键点国家代表中学习机器人运动。 关键点和RL 学习过程完全在模拟环境中完成。 我们展示了拟议方法在机器人操作任务上的有效性, 包括在不同情况下抓住和推动。 我们还调查了经过培训的模式的通用能力。 除了强健的关键点代表外, 我们还进一步应用域随机化和对抗性培训范例, 在现实世界的机器人操作任务中实现零弹射的Sim- 真实传输。