Tang and Ding [IEEE IT 67 (2021) 244-254] studied the class of narrow-sense BCH codes $\mathcal{C}_{(q,q+1,4,1)}$ and their dual codes with $q=2^m$ and established that the codewords of the minimum (or the second minimum) weight in these codes support infinite families of 4-designs or 3-designs. Motivated by this, we further investigate the codewords of the next adjacent weight in such codes and discover more infinite classes of $t$-designs with $t=3,4$. In particular, we prove that the codewords of weight $7$ in $\mathcal{C}_{(q,q+1,4,1)}$ support $4$-designs when $m \geqslant 5$ is odd and $3$-designs when $m \geqslant 4$ is even, which provide infinite classes of simple $t$-designs with new parameters. Another significant class of $t$-designs we produce in this paper has supplementary designs with parameters 4-$(2^{2s+1}+ 1,5,5)$; these designs have the smallest index among all the known simple 4-$(q+1,5,\lambda)$ designs derived from codes for prime powers $q$; and they are further proved to be isomorphic to the 4-designs admitting the projective general linear group PGL$(2,2^{2s+1})$ as automorphism group constructed by Alltop in 1969.


翻译:(IEEE IT 67 (2021) 244-254) 和 Dang & Ding [IEEE IT 67 (2021) 244-254) 研究了狭义BCH 代码的类别 $\ mathcal{C* (q,q+1,4,1美元) 美元 及其以美元计的双代码 $=2=2 百万美元,并确定这些代码中最小(或第二最低)重量的编码字词支持4个设计或3个设计组成的无限家庭。 受此启发, 我们进一步调查了这些代码中下一个相邻重量的编码, 并发现了更多以美元计为3,4美元 美元 的无限的类别。 特别是, 我们证明, 7美元 的自动代码 $=2 (q,q+1, q+1, 1美元 美元) 支持4美元 的无限定义。 本文中, 4G+ 美元 美元 的最小的直径组具有简单的参数, 4G+ =2 美元 基本设计。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
8+阅读 · 2019年1月30日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月2日
Arxiv
0+阅读 · 2021年9月1日
Arxiv
0+阅读 · 2021年9月1日
Arxiv
0+阅读 · 2021年9月1日
VIP会员
相关VIP内容
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
8+阅读 · 2019年1月30日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员