Tang and Ding [IEEE IT 67 (2021) 244-254] studied the class of narrow-sense BCH codes $\mathcal{C}_{(q,q+1,4,1)}$ and their dual codes with $q=2^m$ and established that the codewords of the minimum (or the second minimum) weight in these codes support infinite families of 4-designs or 3-designs. Motivated by this, we further investigate the codewords of the next adjacent weight in such codes and discover more infinite classes of $t$-designs with $t=3,4$. In particular, we prove that the codewords of weight $7$ in $\mathcal{C}_{(q,q+1,4,1)}$ support $4$-designs when $m \geqslant 5$ is odd and $3$-designs when $m \geqslant 4$ is even, which provide infinite classes of simple $t$-designs with new parameters. Another significant class of $t$-designs we produce in this paper has supplementary designs with parameters 4-$(2^{2s+1}+ 1,5,5)$; these designs have the smallest index among all the known simple 4-$(q+1,5,\lambda)$ designs derived from codes for prime powers $q$; and they are further proved to be isomorphic to the 4-designs admitting the projective general linear group PGL$(2,2^{2s+1})$ as automorphism group constructed by Alltop in 1969.
翻译:(IEEE IT 67 (2021) 244-254) 和 Dang & Ding [IEEE IT 67 (2021) 244-254) 研究了狭义BCH 代码的类别 $\ mathcal{C* (q,q+1,4,1美元) 美元 及其以美元计的双代码 $=2=2 百万美元,并确定这些代码中最小(或第二最低)重量的编码字词支持4个设计或3个设计组成的无限家庭。 受此启发, 我们进一步调查了这些代码中下一个相邻重量的编码, 并发现了更多以美元计为3,4美元 美元 的无限的类别。 特别是, 我们证明, 7美元 的自动代码 $=2 (q,q+1, q+1, 1美元 美元) 支持4美元 的无限定义。 本文中, 4G+ 美元 美元 的最小的直径组具有简单的参数, 4G+ =2 美元 基本设计。