We study the problem of finding a spanning forest in an undirected, $n$-vertex multi-graph under two basic query models. One is the Linear query model which are linear measurements on the incidence vector induced by the edges; the other is the weaker OR query model which only reveals whether a given subset of plausible edges is empty or not. At the heart of our study lies a fundamental problem which we call the {\em single element recovery} problem: given a non-negative real vector $x$ in $N$ dimension, return a single element $x_j > 0$ from the support. Queries can be made in rounds, and our goals is to understand the trade-offs between the query complexity and the rounds of adaptivity needed to solve these problems, for both deterministic and randomized algorithms. These questions have connections and ramifications to multiple areas such as sketching, streaming, graph reconstruction, and compressed sensing. Our main results are: * For the single element recovery problem, it is easy to obtain a deterministic, $r$-round algorithm which makes $(N^{1/r}-1)$-queries per-round. We prove that this is tight: any $r$-round deterministic algorithm must make $\geq (N^{1/r} - 1)$ linear queries in some round. In contrast, a $1$-round $O(\log^2 N)$-query randomized algorithm which succeeds 99% of the time is known to exist. * We design a deterministic $O(r)$-round, $\tilde{O}(n^{1+1/r})$-OR query algorithm for graph connectivity. We complement this with an $\tilde{\Omega}(n^{1 + 1/r})$-lower bound for any $r$-round deterministic algorithm in the OR-model. * We design a randomized, $2$-round algorithm for the graph connectivity problem which makes $\tilde{O}(n)$-OR queries. In contrast, we prove that any $1$-round algorithm (possibly randomized) requires $\tilde{\Omega}(n^2)$-OR queries.


翻译:我们研究在两个基本查询模型下找到一个覆盖森林的不直接方向、 美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=方程式的问题。一个是线性查询模型,这是对边缘引出的事件矢量的线性测量;另一个是较弱的 OR 查询模型,它只揭示了某一组貌似边缘是否为空或不是。在我们研究的核心是一个根本问题,我们称之为单元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=方程式=美元=美元=美元=美元=美元=方程式=美元=美元=美元=美元=美元=美元=方程式=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月2日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员