We aim to bridge the gap between typical human and machine-learning environments by extending the standard framework of few-shot learning to an online, continual setting. In this setting, episodes do not have separate training and testing phases, and instead models are evaluated online while learning novel classes. As in the real world, where the presence of spatiotemporal context helps us retrieve learned skills in the past, our online few-shot learning setting also features an underlying context that changes throughout time. Object classes are correlated within a context and inferring the correct context can lead to better performance. Building upon this setting, we propose a new few-shot learning dataset based on large scale indoor imagery that mimics the visual experience of an agent wandering within a world. Furthermore, we convert popular few-shot learning approaches into online versions and we also propose a new contextual prototypical memory model that can make use of spatiotemporal contextual information from the recent past.


翻译:我们的目标是缩小典型的人类和机器学习环境之间的差距,将少发学习的标准框架扩展至在线、持续的环境。在这一背景下,片段没有单独的培训和测试阶段,而是在学习新颖课程的同时对模型进行在线评估。像现实世界一样,在现实世界中,由于存在时空空间环境,我们在过去可以找到学习技能,我们的在线少发学习设置也具有一个长期变化的基础背景。对象类在上下文中相互关联,并推断正确的背景可以导致更好的业绩。在此背景下,我们提议基于大型室内图像的新的少发学习数据集,以模拟一个在世界上游荡的代理人的视觉经验。此外,我们把流行的少发学习方法转换成在线版本,我们还提出一个新的背景准图案记忆模型,可以利用最近发生的多发背景信息。

1
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
117+阅读 · 2019年12月24日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
黑龙江大学自然语言处理实验室
28+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
22篇论文!增量学习/终生学习论文资源列表
专知
32+阅读 · 2018年12月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
6+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
黑龙江大学自然语言处理实验室
28+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
22篇论文!增量学习/终生学习论文资源列表
专知
32+阅读 · 2018年12月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
6+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
8+阅读 · 2014年6月27日
Top
微信扫码咨询专知VIP会员