We establish a reversal of Lyapunov's inequality for monotone log-concave sequences, settling a conjecture of Havrilla-Tkocz and Melbourne-Tkocz. A strengthened version of the same conjecture is disproved through counter example. We also derive several information theoretic inequalities as consequences. In particular sharp bounds are derived for the varentropy, R\'enyi entropies, and the concentration of information of monotone log-concave random variables. Moreover, the majorization approach utilized in the proof of the main theorem, is applied to derive analogous information theoretic results in the symmetric setting, where the Lyapunov reversal is known to fail.
翻译:我们为单调对数-对数-对数序列建立了扭转Lyapunov不平等的体系,解决了Havrilla-Tkocz和墨尔本-Tkocz的猜想。通过反证例,可以推翻同一猜想的强化版本。我们还得出了几种信息理论不平等作为后果。特别是,为 varentropy、R'enyi 和单调对数随机变量的信息集中性得出了尖锐的界限。 此外,在主要对数模型的证明中所使用的主控法方法被用于在已知Lyapunov逆转失败的对数环境中得出类似的信息理论结果。