Motivated by applications to the theory of rank-metric codes, we study the problem of estimating the number of common complements of a family of subspaces over a finite field in terms of the cardinality of the family and its intersection structure. We derive upper and lower bounds for this number, along with their asymptotic versions as the field size tends to infinity. We then use these bounds to describe the general behaviour of common complements with respect to sparseness and density, showing that the decisive property is whether or not the number of spaces to be complemented is negligible with respect to the field size. By specializing our results to matrix spaces, we obtain upper and lower bounds for the number of MRD codes in the rank metric. In particular, we answer an open question in coding theory, proving that MRD codes are sparse for all parameter sets as the field size grows, with only very few exceptions. We also investigate the density of MRD codes as their number of columns tends to infinity, obtaining a new asymptotic bound. Using properties of the Euler function from number theory, we then show that our bound improves on known results for most parameter sets. We conclude the paper by establishing general structural properties of the density function of rank-metric codes.
翻译:以对等级代码理论的应用为动力,我们研究如何估计一个子空间大家庭在一个有限字段上的共同补充数量的问题,从家庭的基本特征及其交叉结构的角度来估计一个子空间大家庭在一个有限字段上的共同补充数量。我们得出这个数字的上下界限,以及随着字段大小趋向无穷无穷的无穷版面。我们然后使用这些界限来描述共同补充在稀少和密度方面的一般行为,表明在字段大小方面,决定性的属性是是否要补充的空间数目微不足道。我们通过将结果专门用于矩阵空间,我们获得了等级衡量标准中MRD代码数目的上下限。特别是,我们回答一个开放式的编码理论问题,证明由于字段大小的扩大,MRD代码对所有参数组都很少使用,只有极少的例外。我们还调查MRD代码的密度,因为它们的柱数趋向不尽无尽,因此有了一个新的微调约束。我们利用数字理论中的 Euler函数的特性,我们然后表明,我们在确定大多数参数组的结构密度的精确性能改进了我们已知的密度。