Whilst network coordination games and network anti-coordination games have received a considerable amount of attention in the literature, network games with coexisting coordinating and anti-coordinating players are known to exhibit more complex behaviors. In fact, depending on the network structure, such games may even fail to have pure-strategy Nash equilibria. An example is represented by the well-known matching pennies (discoordination) game. In this work, we first provide graph-theoretic conditions for the existence of pure-strategy Nash equilibria in mixed network coordination/anti-coordination games of arbitrary size. For the case where such conditions are met, we then study the asymptotic behavior of best-response dynamics and provide sufficient conditions for finite-time convergence to the set of Nash equilibria. Our results build on an extension and refinement of the notion of network cohesiveness and on the formulation of the new concept of network indecomposibility.


翻译:尽管网络协调游戏和网络反协调游戏在文献中受到相当程度的注意,但已知与同时进行协调和反协调的玩家的网络游戏表现出更为复杂的行为。事实上,根据网络结构,这种游戏甚至可能没有纯粹的策略性Nash equilibria(Nash equilibria) 。一个有名的匹配硬币(discoordination)游戏就是例子。在这项工作中,我们首先为在任意规模的混合网络协调/反协调游戏中存在纯战略性Nash equilibria提供图形理论条件。对于满足这些条件的情况,我们接着研究最佳反应动态的无约束行为,并为与Nash equilibria 组合的不定期融合提供足够条件。我们的成果建立在网络凝聚力概念的扩展和完善以及网络不兼容性新概念的形成之上。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Arxiv
4+阅读 · 2018年12月3日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关VIP内容
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员