We revisit the problem of finding small $\epsilon$-separation keys introduced by Motwani and Xu (VLDB 07). In this problem, the input is $m$-dimensional tuples $x_1,x_2,\ldots,x_n $. The goal is to find a small subset of coordinates that separates at least $(1-\epsilon){n \choose 2}$ pairs of tuples. They provided a fast algorithm that runs on $\Theta(m/\epsilon)$ tuples sampled uniformly at random. We show that the sample size can be improved to $\Theta(m/\sqrt{\epsilon})$. Our algorithm also enjoys a faster running time. To obtain this result, we provide upper and lower bounds on the sample size to solve the following decision problem. Given a subset of coordinates $A$, reject if $A$ separates fewer than $(1-\epsilon){n \choose 2}$ pairs, and accept if $A$ separates all pairs. The algorithm must be correct with probability at least $1-\delta$ for all $A$. We show that for algorithms based on sampling: - $\Theta(m/\sqrt{\epsilon})$ samples are sufficient and necessary so that $\delta \leq e^{-m}$ and - $\Omega(\sqrt{\frac{\log m}{\epsilon}})$ samples are necessary so that $\delta$ is a constant. Our analysis is based on a constrained version of the balls-into-bins problem. We believe our analysis may be of independent interest. We also study a related problem that asks for the following sketching algorithm: with given parameters $\alpha,k$ and $\epsilon$, the algorithm takes a subset of coordinates $A$ of size at most $k$ and returns an estimate of the number of unseparated pairs in $A$ up to a $(1\pm\epsilon)$ factor if it is at least $\alpha {n \choose 2}$. We show that even for constant $\alpha$ and success probability, such a sketching algorithm must use $\Omega(mk \log \epsilon^{-1})$ bits of space; on the other hand, uniform sampling yields a sketch of size $\Theta(\frac{mk \log m}{\alpha \epsilon^2})$ for this purpose.
翻译:我们重新研究如何找到由 Motwani 和 Xu (VLDB 07) 引入的小 美元解析键的问题。 在此问题上, 输入的金额是 $1, x_ 2,\ ldots, x_ n美元。 目标是找到一个小的一组坐标, 将至少 $( 1-\ epslon) 和 tuple 相分离 。 它们提供了一种快速的算法, 运行在 $( m/\ episl) 和 Xu( VLDB 07 ) 上, 随机抽样值是 美元。 我们显示的是 $( 美元) 的样本值 $( 美元) 。 我们提供一个小的标码, 以 $( $) 来解析( $) 来解析( 美元) 。 如果 以 美元 美元( 美元) 和 美元( 美元( 美元) ) 的解算方法必须解算。