Matrices with low numerical rank are omnipresent in many signal processing and data analysis applications. The pivoted QLP (p-QLP) algorithm constructs a highly accurate approximation to an input low-rank matrix. However, it is computationally prohibitive for large matrices. In this paper, we introduce a new algorithm termed Projection-based Partial QLP (PbP-QLP) that efficiently approximates the p-QLP with high accuracy. Fundamental in our work is the exploitation of randomization and in contrast to the p-QLP, PbP-QLP does not use the pivoting strategy. As such, PbP-QLP can harness modern computer architectures, even better than competing randomized algorithms. The efficiency and effectiveness of our proposed PbP-QLP algorithm are investigated through various classes of synthetic and real-world data matrices.
翻译:数字级别低的矩阵在许多信号处理和数据分析应用程序中无处不在。 配对的 QLP (p- QLP) 算法( p- QLP) 构建了一个非常精确的近似输入低级矩阵。 但是,它在计算上对大型矩阵来说令人望而却步。 在本文中, 我们引入了一个新的算法, 称为基于投影的 部分 QLP (PbP- QLP), 其有效接近 p- QLP 。 我们工作的根本是随机化的利用, 与 p- QLP 相对照, PbP- QLP 不使用配对策略。 因此, PbP- QLP 可以使用现代计算机结构, 甚至比相互竞争的随机化算法更好。 我们提议的 PbP- QLP 算法的效率和效力是通过各种合成和现实世界数据矩阵来调查的。