Trial history biases in decision-making tasks are thought to reflect systematic updates of decision variables, therefore their precise nature informs conclusions about underlying heuristic strategies and learning processes. However, random drifts in decision variables can corrupt this inference by mimicking the signatures of systematic updates. Hence, identifying the trial-by-trial evolution of decision variables requires methods that can robustly account for such drifts. Recent studies (Lak'20, Mendon\c{c}a'20) have made important advances in this direction, by proposing a convenient method to correct for the influence of slow drifts in decision criterion, a key decision variable. Here we apply this correction to a variety of updating scenarios, and evaluate its performance. We show that the correction fails for a wide range of commonly assumed systematic updating strategies, distorting one's inference away from the veridical strategies towards a narrow subset. To address these limitations, we propose a model-based approach for disambiguating systematic updates from random drifts, and demonstrate its success on real and synthetic datasets. We show that this approach accurately recovers the latent trajectory of drifts in decision criterion as well as the generative systematic updates from simulated data. Our results offer recommendations for methods to account for the interactions between history biases and slow drifts, and highlight the advantages of incorporating assumptions about the generative process directly into models of decision-making.


翻译:决策任务中的试验历史偏差被认为反映了决策变量的系统更新,因此,其精确性质可以使人得出关于基本推理策略和学习过程的结论。然而,决定变量的随机漂移可能通过模仿系统更新的签名而腐蚀这种推论。因此,确定决定变量的逐个演变需要能够强有力地说明这种漂移情况的方法。最近进行的研究(Lak'20, Mendon\c{c}a'20)在这方面取得了重要进展,提出了纠正决策标准缓慢漂移的影响的方便方法,这是一个关键决策变量。我们在这里将这一纠正应用于各种更新的情景,并评估其绩效。我们表明,对广泛、通常假定的系统更新战略的纠正失败,使一个人从偏重于偏重于偏重于偏重于狭隘战略,转向狭隘的组合。为了解决这些局限性,我们提出了一个基于模型的方法,将系统更新与随机漂移有关,并展示其在真实和合成数据集上的成功。我们表明,这一方法准确地恢复了决策制定过程中的潜流动轨迹轨迹轨迹轨迹的轨迹轨迹,并直接地将历史测测测结果。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员