Ultrasound examination is widely used in the clinical diagnosis of thyroid nodules (benign/malignant). However, the accuracy relies heavily on radiologist experience. Although deep learning techniques have been investigated for thyroid nodules recognition. Current solutions are mainly based on static ultrasound images, with limited temporal information used and inconsistent with clinical diagnosis. This paper proposes a novel method for the automated recognition of thyroid nodules through an exhaustive exploration of ultrasound videos and key-frames. We first propose a detection-localization framework to automatically identify the clinical key-frames with typical nodules in each ultrasound video. Based on the localized key-frames, we develop a key-frame guided video classification model for thyroid nodule recognition. Besides, we introduce motion attention module to help network focus on significant frames in an ultrasound video, which is consistent with clinical diagnosis. The proposed thyroid nodule recognition framework is validated on clinically collected ultrasound videos, demonstrating superior performance compared with other state-of-the-art methods.
翻译:超声波检查在甲状腺结核临床诊断中广泛使用(优度/显性),但准确性在很大程度上依赖放射学家的经验。虽然为甲状腺结核的识别对深层学习技术进行了调查。目前的解决办法主要基于静态超声波图像,使用的时间信息有限,与临床诊断不一致。本文件提出了通过对超声波视频和关键框架进行彻底探索自动识别甲状腺结核的新颖方法。我们首先提出检测定位框架,以自动识别每部超声波视频中典型结核的临床关键框架。我们根据本地关键框架,开发了一个用于甲状腺结核识别的关键框架指导视频分类模型。此外,我们引入了运动关注模块,以帮助超声波视频中重要框架的网络焦点,这与临床诊断是一致的。拟议的甲状腺结核识别框架在临床收集的超声波视频上得到验证,显示与其他最先进的方法相比,表现优。