We study automatic title generation and present a method for generating domain-controlled titles for scientific articles. A good title allows you to get the attention that your research deserves. A title can be interpreted as a high-compression description of a document containing information on the implemented process. For domain-controlled titles, we used the pre-trained text-to-text transformer model and the additional token technique. Title tokens are sampled from a local distribution (which is a subset of global vocabulary) of the domain-specific vocabulary and not global vocabulary, thereby generating a catchy title and closely linking it to its corresponding abstract. Generated titles looked realistic, convincing, and very close to the ground truth. We have performed automated evaluation using ROUGE metric and human evaluation using five parameters to make a comparison between human and machine-generated titles. The titles produced were considered acceptable with higher metric ratings in contrast to the original titles. Thus we concluded that our research proposes a promising method for domain-controlled title generation.
翻译:我们研究自动产权生成,并展示产生科学文章域控标题的方法。良好的产权使你得到研究应有的关注。标题可以被解释为包含已执行过程信息的文件的高压缩描述。对于域控标题,我们使用了预先培训的文本到文本变压器模型和额外的象征性技术。标语样本来自特定域词汇的本地发行(全球词汇的一个子集),而不是全球词汇,从而产生一个可捕捉的标题,并将其与相应的抽象紧密联系起来。生成的标题看起来现实、有说服力,非常接近地面真相。我们利用ROUGE衡量和人类评价的五个参数进行了自动化评价,以比较人类和机器产生的产权。制作的标语被认为可以接受,比原始标题的评分更高。我们的结论是,我们的研究为域控名称的生成提出了一个很有希望的方法。