We initiate the study of multipacking problems for geometric point sets with respect to their Euclidean distances. We consider a set of $n$ points $P$ and define $N_s[v]$ as the subset of $P$ that includes the $s$ nearest points of $v \in P$ and the point $v$ itself. We assume that the \emph{$s$-th neighbor} of each point is unique, for every $s \in \{0, 1, 2, \dots , n-1\}$. For a natural number $r \leq n$, an $r$-multipacking is a set $ M \subseteq P $ such that for each point $ v \in P $ and for every integer $ 1\leq s \leq r $, $|N_s[v]\cap M|\leq (s+1)/2$. The $r$-multipacking number of $ P $ is the maximum cardinality of an $r$-multipacking of $ P $ and is denoted by $ \MP_{r}(P) $. For $r=n-1$, an $r$-multipacking is called a multipacking and $r$-multipacking number is called as multipacking number. We study the problem of computing a maximum $r$-multipacking for point sets in $\mathbb{R}^2$. We show that a maximum $1$-multipacking can be computed in polynomial time but computing a maximum $2$-multipacking is NP complete. Further, we provide approximation and parameterized solutions to the $2$-multipacking problem.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
26+阅读 · 2019年11月24日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
18+阅读 · 2022年11月21日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
26+阅读 · 2019年11月24日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员