Conditional normalizing flows can generate diverse image samples for solving inverse problems. Most normalizing flows for inverse problems in imaging employ the conditional affine coupling layer that can generate diverse images quickly. However, unintended severe artifacts are occasionally observed in the output of them. In this work, we address this critical issue by investigating the origins of these artifacts and proposing the conditions to avoid them. First of all, we empirically and theoretically reveal that these problems are caused by "exploding inverse" in the conditional affine coupling layer for certain out-of-distribution (OOD) conditional inputs. Then, we further validated that the probability of causing erroneous artifacts in pixels is highly correlated with a Mahalanobis distance-based OOD score for inverse problems in imaging. Lastly, based on our investigations, we propose a remark to avoid exploding inverse and then based on it, we suggest a simple remedy that substitutes the affine coupling layers with the modified rational quadratic spline coupling layers in normalizing flows, to encourage the robustness of generated image samples. Our experimental results demonstrated that our suggested methods effectively suppressed critical artifacts occurring in normalizing flows for super-resolution space generation and low-light image enhancement.
翻译:条件正常的流程可以产生不同的图像样本来解决反面问题。 成像中反向问题的多数正常流动都使用有条件的胡同结合层,可以快速生成不同图像。 但是,偶尔在它们的输出中观察到意外的严重文物。 在这项工作中,我们通过调查这些文物的起源并提出避免这些文物的条件来解决这一关键问题。 首先,我们从经验上和理论上揭示,这些问题是由有条件的离散(OOOD)有条件投入的离散(OOOOD)相交层“反向”造成的。 然后,我们进一步证实,在像素中造成错误的文物的可能性与在成像中产生反向问题的马哈拉诺比远程OOOOD得分高度相关。 最后,我们根据我们的调查,提出一个避免反向爆炸的言论,然后在此基础上,我们建议一个简单的补救办法,用修正的理性二次对接合层代替经调整的合理二次对接合层,鼓励生成图像样本的稳健性。 我们的实验结果表明,我们所建议的方法有效地抑制了在正常的生成中生成的低光度空间图像。</s>