In this paper, we consider the problem of computing the entire sequence of the maximum degree of minors of a block-structured symbolic matrix (a generic partitioned polynomial matrix) $A = (A_{\alpha\beta} x_{\alpha \beta} t^{d_{\alpha \beta}})$, where $A_{\alpha\beta}$ is a $2 \times 2$ matrix over a field $\mathbf{F}$, $x_{\alpha \beta}$ is an indeterminate, and $d_{\alpha \beta}$ is an integer for $\alpha = 1,2,\dots, \mu$ and $\beta = 1,2,\dots,\nu$, and $t$ is an additional indeterminate. This problem can be viewed as an algebraic generalization of the maximum weight bipartite matching problem. The main result of this paper is a combinatorial $O(\mu \nu \min\{\mu, \nu\}^2)$-time algorithm for computing the entire sequence of the maximum degree of minors of a $(2 \times 2)$-type generic partitioned polynomial matrix of size $2\mu \times 2\nu$. We also present a minimax theorem, which can be used as a good characterization (NP $\cap$ co-NP characterization) for the computation of the maximum degree of minors of order $k$. Our results generalize the classical primal-dual algorithm (the Hungarian method) and minimax formula (Egerv\'ary's theorem) for the maximum weight bipartite matching problem.
翻译:在本文中, 我们考虑如何计算一个块状符号矩阵( 通用分割的多面体矩阵) 的未成年人最大比例的整个序列 $A = (A ⁇ alpha\ beta} x ⁇ alpha\ beta} t ⁇ d ⁇ alpha\ beta} t ⁇ d ⁇ alpha\ beta} $ t ⁇ d ⁇ d ⁇ pha\ beta} 美元, 其中$A\ alpha\ parta} 最大比例序列的全部序列, 美元是一个 2 倍的2 倍的矩阵。 这个问题可以被视为对一个域 $\ mathf{F} 美元, $x ⁇ alpha\ beta} 美元 和 $$ dalpha= 1,\ doff a,\ a,\\\\\\\ max= max mal mal=malalalalalalalalalal legal legal legal =2 美元 最高比例的计算方法, 美元= $= malmoal malmoalmax mal =xxxxxxxxxxxxxxxxxxxxxxxxxxlalalalal 美元 美元 美元=== 美元==== 美元 美元== 美元====== 美元===== 美元 美元 美元 美元 美元=== 美元============= 美元 美元总正正正平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平级的计算法